
Technical Overview of Aster
Jun 26th, 2012

Karthik Guruswamy

Yushu Yao

Confidential and proprietary. Copyright © 2011 Teradata Corporation. 2

• 8:45-9:00 Setup access to NERSC Aster

• 9:00-10:00 Introduction to Aster system structure

• 10:00-11:00 Basic Aster Data Usage

• 11:00-12:00 Best practice to manage your data in Aster

• 12:00-13:00 Working Lunch, Hand-on Session

• 13:00-14:00 Introduction to nCluster

• 14:00-15:00 Introduction to SQL-MapReduce

• 15:00-17:00 Hand on session and Q&A

Agenda

Architecture Overview

Confidential and proprietary. Copyright © 2011 Teradata Corporation. 4

nCluster Architecture

Architectural Highlights:

• Cluster of tens to hundreds of
commodity hardware boxes
managed as a single database.

• 4 independent (share nothing)
tiers for management, query
processing, loading, & backup.

• In-database SQL-MapReduce
enables parallelization of query
and analytics processing.

Queries/Answers

Queen

Reports, Analytics, Applications
(SQL / ODBC / JDBC / OleDB)

Queries

Data

Worker Nodes

Loader Nodes

Aster nCluster Database

Confidential and proprietary. Copyright © 2011 Teradata Corporation. 5

The nCluster Approach: MPP Analytic Platform

• Built for:

- Data growth:
• MPP architecture, simple scale-out

- Faster loading:
• Parallelized loader nodes

- Agile analytics, in-database:
• SQL/MR framework

- SQL support:
• SQL/JDBC/ODBC/OleDB interfaces

- Availability:
• Built-in data replication

- Low cost:
• Runs on a cluster of x86 servers &

GigE/10GigE networks.

Queries/Answers

Queen

Reports, Analytics, Applications
(SQL / ODBC / JDBC / OleDB)

Queries

Data

Worker Nodes

Loader Nodes

Aster nCluster Database

Confidential and proprietary. Copyright © 2011 Teradata Corporation. 6

The nCluster Approach: Designed for Big Data

• nCluster is optimized for dimensional models (star schemas).

- Native support for distributed and replicated tables enables
optimal performance for joins and complex workloads.

• Performance goal is to maximize local computation.

- nCluster‟s push-down optimizations delegate to workers.

• Proper star schema modeling enables nCluster to optimize
performance.

- There‟s no need to model specifically for nCluster, but
physical partitioning and logical partitioning settings enable
you to improve performance.

Confidential and proprietary. Copyright © 2011 Teradata Corporation. 7

nCluster: The Queen

• Queen

- Manages system, configurations,
schema, and error handling.

- Presents query interface,
SQL/ODBC/JDBC/OleDB
“The Face of nCluster”

- Global query optimizer
coordinates queries in 3 steps:

– Parses SQL statements and hands off

to Planner

– Planner develops a set of sub-queries

to be executed

– Executor will execute sub-queries

and aggregate results

Queries/Answers

Queen

Reports, Analytics, Applications
(SQL / ODBC / JDBC / OleDB)

Queries

Data

Worker Nodes

Loader Nodes

Aster nCluster Database

Confidential and proprietary. Copyright © 2011 Teradata Corporation. 8

Network-Optimized Query Planning

• Translate query into phases

• Send work to nodes that contain the data

• Reduce data fully before sending across the network

Global Optimizer

vWorker
Optimiz
er

vWorker
Optimiz
er

vWorker
Optimiz
er

vWorker
Optimiz
er

vWorker
Optimiz
er

Maximize local computation to minimize network data flow

Independent optimization at global and local level maximizes performance

Confidential and proprietary. Copyright © 2011 Teradata Corporation. 9

nCluster: Worker Nodes

• Worker Node

- Stores data and interacts with
the queen and other workers.

- Executes queen‟s orders:

• Run queries

• Replicate

• Balance storage

• Balance processing

- Local query optimizer

Queries/Answers

Queen

Reports, Analytics, Applications
(SQL / ODBC / JDBC / OleDB)

Queries

Data

Worker Nodes

Loader Nodes

Aster nCluster Database

Confidential and proprietary. Copyright © 2011 Teradata Corporation. 10

nCluster: Loader Nodes

• Loader Node

- Receives new data from bulk
loading clients (for example,
nCluster_loader,
Informatica, similar tools)

- Partitions this data into
appropriate segments

- Distributes the segmented
data across vworkers

Queries/Answers

Queen

Reports, Analytics, Applications
(SQL / ODBC / JDBC / OleDB)

Queries

Data

Worker Nodes

Loader Nodes

Aster nCluster Database

Confidential and proprietary. Copyright © 2011 Teradata Corporation. 11

Understanding Row and Column Storage

Hybrid row and column ensures performance with analytic breadth

Row Store

Column Store

Row Store
PageviewsTable

userid ip ts domain page qs ref
domain

…

Column Store
Pageviews table

userid ip ts domain

projection1

…

projection2 projection3 projection4

Confidential and proprietary. Copyright © 2011 Teradata Corporation. 12

http://developer.teradata.com/database/articles/introducing-
aster-express

Where to get a VMWare version of Aster ?

http://developer.teradata.com/database/articles/introducing-aster-express
http://developer.teradata.com/database/articles/introducing-aster-express
http://developer.teradata.com/database/articles/introducing-aster-express
http://developer.teradata.com/database/articles/introducing-aster-express
http://developer.teradata.com/database/articles/introducing-aster-express

Database Objects

Confidential and proprietary. Copyright © 2011 Teradata Corporation. 14

Creating a Distributed table- Syntax

CREATE TABLE AdEventFact (

 UserID BIGINT NOT NULL,

 AdID BIGINT NOT NULL,

 CampaignID INTEGER NOT NULL,

 PageViewID BIGINT NOT NULL,

 CookieID VARCHAR(20),

 IpAddr CHAR(20) NOT NULL,

 EventTimeStamp TIMESTAMP NOT NULL,

 EventType CHAR(10),

 Page VARCHAR(100),

 DomainID BIGINT NOT NULL

)

DISTRIBUTE BY HASH (UserID)

STORAGE ROW|COLUMN

; FACT tables must
declare DISTRIBUTE
BY HASH (col_name)
clause.

The column list
begins and ends
with parenthesis.

Confidential and proprietary. Copyright © 2011 Teradata Corporation. 15

Creating a Replicated Table - Syntax

CREATE TABLE DimAd(

 AdID BIGINT NOT NULL,

 AdName VARCHAR(30) NOT NULL,

 AdDescription VARCHAR(100) NOT NULL,

 AdType CHAR(10) NOT NULL,

 AdText TEXT,

 AdWidth INTEGER,

 AdHeight INTEGER,

 AdStatus CHAR(10),

 CONSTRAINT DimAdPK PRIMARY KEY (AdID)

)

DISTRIBUTE BY REPLICATION

STORAGE ROW|COLUMN

;

Dimension tables
often implement
PRIMARY KEYs for
uniqueness.

Note, there is no Distribution KEY
declaration for Replicated tables.

Confidential and proprietary. Copyright © 2011 Teradata Corporation. 16

Multi-Level Partitioning Syntax Example

Confidential and proprietary. Copyright © 2009 Aster Data Systems

CREATE TABLE sales

 (sales_order_id int NOT NULL

 , customer_id int NOT NULL

 , cust_state char(2)

 , region char(1)

 , amount int

 , sales_date date)

 DISTRIBUTE BY HASH (sales_order_id) -- Physical Partitioning

 PARTITION BY RANGE (sales_date) -- Logical Partitioning

 (partition sales_old (END „2010-07-01‟::date) -- old sales

 ,partition sales_2010_07 (END „2010-08-01‟ ::date -- January 2010 sales

 PARTITION BY LIST (region) -- Logical child partition

 (partition east (VALUES („E‟) -- east division

 ,partition west (VALUES („W‟))) -- west division

 ,partition sales_2010_08 (END „2010-09-01‟ ::date -- February 2010 sales

 PARTITION BY LIST (region) -- Logical child partition

 (partition east (VALUES („E‟) -- east division

 ,partition west (VALUES („W‟))) -- west division

 ,partition sales_2010_09 (END „2010-10-01‟ ::date) -- March 2010 sales

 ,partition sales_future (END „3999-01-01‟ ::date) -- future dated sales

);

SQL/MR Overview

Confidential and proprietary. Copyright © 2011 Teradata Corporation. 18

- Databases have long been data analysis engines

• For reporting on structured data

- SQL is high-level, easy-to-iterate

• Works on any schema

- SQL can be scaled to large amounts of data

• Data warehouses with petabytes well-established

- Databases are well connected to IT infrastructure

• Standardized Interfaces

Databases for Big Data?

Confidential and proprietary. Copyright © 2011 Teradata Corporation. 19

- Relational Databases not suited to Multi-structured Data

• Big Data structure often unknown prior to exploration

• Don‟t want to hold up Big Data loading for parsing

- SQL is a poor match for some problems

• Some queries cumbersome, non-intuitive, or impossible to express

• Query optimizers can make poor choices leading to poor performance

- Traditional user-defined functions (UDFs) an incomplete fix

• Scalar, aggregate functions of limited expressiveness

• Table functions not designed for parallelism

• Fixed schema limits reusability

Shortcomings of Databases

Confidential and proprietary. Copyright © 2011 Teradata Corporation. 20

- MapReduce scales processing to huge data volumes

• Deployed on a large scale at several well-known Internet companies

• Overcomes scale and expressiveness problems of traditional DBMSs

- Excellent programming model

• Simple to understand

• Structured to facilitate parallelization

• Implemented in many languages

The MapReduce Movement

Confidential and proprietary. Copyright © 2011 Teradata Corporation. 21

WordCount Application Design with MapReduce

Confidential and proprietary. Copyright © 2011 Teradata Corporation. 22

- But, MapReduce is heavily oriented to coding

• New question frequently means new code

• Harder to iterate

- Lost the declarative, reusable functionality of SQL

• Data model: schema, statistics, locality optimization

• General-purpose algorithms: joins, grouping, sorting

- Why can‟t we combine the best of Database and MapReduce
to create a declarative, reusable, and scalable analysis tool?

Shortcomings of MapReduce

Confidential and proprietary. Copyright © 2011 Teradata Corporation. 23

 Scalable
 It should be easy to leverage hardware resources of 100‟s of servers

 Fault-tolerance should be handled by the system

 Analyst-friendly
 Want flexible, declarative language for analysts

 Enable developers to create widely-reusable tools for analysts

 Semantics of queries not mixed up with implementation details

 Developer-friendly
 Want straightforward programming model

 Provide useful platform services to developer to maximize freedom

SQL-MR: Design Goals

Confidential and proprietary. Copyright © 2011 Teradata Corporation. 24

SQL-MapReduce®: What Is It?

• Aster Data’s patented database implementation of the
standard MapReduce framework for advanced analytics

- Examples: time-series, path and pattern analysis, graph analysis,
market basket, decision trees, cluster analysis, data transformation

• Architected for Optimal Big Data Analytics Execution

- Supports both batch and interactive queries executed in parallel

- Maps sub-logic to multiple nodes and then combines/reduces results

- Provides single process for executing both SQL and MapReduce logic

• Easy to Use: Combines Standard SQL and MapReduce

- Delivers power of MapReduce through SQL and any SQL-based tool

- Does not require a Hadoop implementation

Confidential and proprietary. Copyright © 2011 Teradata Corporation. 25

SQL-MapReduce®: What Does It Do?

SQL-MR enables the execution of user code within nCluster:

 User code is first installed throughout the cluster,

 then it‟s invoked on database data through SQL.

 Execution is automatically parallelized across cluster.

 Supports Java and C as primary languages, but other
programming languages (C++, C#. Perl, Python, R)
are supported through the Streaming interface.

SQL-MR Invocation

Confidential and proprietary. Copyright © 2011 Teradata Corporation. 27

 f()

Basic Primitive: SQL-MR Function

ARGS

Data Set #1

Data Set #2

 f()
 f()

Confidential and proprietary. Copyright © 2011 Teradata Corporation. 28

 Self-describing, parallelized, relation-to-relation transform

 Operates on an input relation
 Input relation (table, sub-query, etc.) specified by query

 By default, allow any input schema; function can reject

 Input rows can be accessed row-wise or partition-wise

 Emits an output relation
 Function can be used in query like any relation; joined, aggregated, etc.

 Free-form transformation
 Output schema chosen by function; based on input schema,

 argument clauses, external considerations, etc.

 No enforced relationship between rows in input and output

Basic Primitive: SQL-MR Function

Confidential and proprietary. Copyright © 2011 Teradata Corporation. 29

• RowFunction

 Corresponds to a map function.

 Must implement the operateOnSomeRows method.

 Must be invoked without a PARTITION BY.

 “Sees” all the appropriate rows on a particular worker.

• PartitionFunction

 Corresponds to a reduce function.

 Must implement the operateOnPartition method.

 Must be invoked with a PARTITION BY, to specify how rows are reshuffled.

 “Sees” all the appropriate rows in a partition.

Types of SQL-MR Functions

Confidential and proprietary. Copyright © 2011 Teradata Corporation. 30

SELECT * FROM

 IPGEO (

 on webclicks

 ip_address_col(„ip_address‟)

)

;

Input (webclicks):

172.18.58.54 | user_id1 | 2012-01-01 23:33:30

Output:

172.18.58.54 | USA | California | San Jose | user_id1 | 2012-..

Example RowFunction Invocation (Map)

Confidential and proprietary. Copyright © 2011 Teradata Corporation. 31

- Each row function task sees some subset of rows
• The framework is free to schedule tasks to rows in any way

• Data movement is not required. Think 1 -> N, N >= 1

Parallelism – Row Functions

Row function task

Row function task

Row function task

…

Confidential and proprietary. Copyright © 2011 Teradata Corporation. 32

SELECT * FROM

 sessionize(

 on webclicks

 partition by user_id

 order by timestamp

 timecolumn(„timestamp‟) session_timeout(30)

)

;

Input (webclicks):
172.18.58.54 | user_id1 | 2012-01-01 23:33:30

172.18.58.54 | user_id1 | 2012-01-01 23:45:30

Output:
172.18.58.54 | user_id1 | 2012-01-01 23:33:30 | 1

172.18.58.54 | user_id1 | 2012-01-01 23:45:30 | 1

Example PartitionFunction Invocation (Reduce)

Confidential and proprietary. Copyright © 2011 Teradata Corporation. 33

- Each partition function task sees a group of rows
• Rows in group share a common value of the PARTITION BY expression

• The framework forms groups (shuffling across nodes, only if needed). Think N ->
M, M >= 0

Parallelism – Partition Functions

Partition function task

Partition function task

…

Partition function task

Confidential and proprietary. Copyright © 2011 Teradata Corporation. 34

Functions integrated into SQL queries

SELECT ...

FROM functionname(

 ON table-or-query

[PARTITION BY expr...]

 [ORDER BY expr...]

 [clausename (arg...)]...

 (

...

SQL Integration

Confidential and proprietary. Copyright © 2011 Teradata Corporation. 35

- SQL-MR also provides a variety of platform services

• Services automatically managed by framework

• Provides maximum freedom to developers

- Out-of-process execution

• Function inputs and outputs are streamed, enabling high bandwidth

• Bugs, crashes are isolated from database kernel processes

- Can use arbitrary external libraries, run arbitrary processes

• Entire process group managed by framework

• Security, scheduling, etc. managed at process level

• Does not rely on support from any particular runtime

- Clean exception handling

• If exception is ClientVisibleException then the user gets message

• A full stack trace of the exception can be viewed through the AMC

SQL-MR Platform Features

An Example SQL-MR Function

Confidential and proprietary. Copyright © 2011 Teradata Corporation. 37

 Goal: find frequencies of words in a set of documents

 Input data set:
 Documents (docid int, body text)

Word Count in Map/Reduce

docid body

1 „Jack and Jill went up the hill to fetch a pail
of water. Jack fell down and broke his
crown, and Jill came tumbling after.‟

2 „Little Miss Muffet sat on a tuffet, eating her
curds and whey. Along came a spider, who
sat down beside her, and frightened Miss
Muffet away!‟

3 „The itsy bitsy spider went up the water
spout. Down came the ran and washed the
spider out. Out came the sun, and dried up
all the rain. And the itsy bitsy spider went
up the spout again.‟

word count

went 3

hill 1

up 4

down 3

spider 4

tuffet 1

…

 Output data set:
 Count_tokens (word, count)

Confidential and proprietary. Copyright © 2011 Teradata Corporation. 38

BEGIN;

CREATE FACT TABLE documents (

 docid int,

 body text,

) DISTRIBUTE BY HASH(docid);

INSERTINTOdocumentsVALUES,0)‘thisisasingletest

document. it is simple to count the words in this single

documentbyhand.doweneedacluster?’);

END;

SELECT body FROM documents;

Input: The Documents Table

Confidential and proprietary. Copyright © 2011 Teradata Corporation. 39

BEGIN;

\install tokenize.jar

\install count_tokens.jar

SELECT word, count

 FROM

 count_tokens (

 ON (

 SELECT word, count

 FROM tokenize(

 ON documents)

)

 PARTITION BY word

) ORDER BY word DESC;

ABORT;

Invoking the Functions

Confidential and proprietary. Copyright © 2011 Teradata Corporation. 40

BEGIN;

\install tokenize.jar

SELECT word, sum(count)

 FROM tokenize(ON documents)

GROUP BY word

ORDER BY word;

ABORT;

Even Better: Forget the Reduce

Use SQL, Map and Reduce functions as tools that
you can string together in any way to do the job.

nPath and usecases

Confidential and proprietary. Copyright © 2011 Teradata Corporation. 42

• Business Question

- How many distinct users start on a home page, click on an auction,
view the seller‟s profile, and then bid on the item?

• Input Data

- clicks table (userId, timeOfAction, actionType, …)

- actionType is an enum of {visitHome, viewAuction,
placeBid, searchItem, viewProfile, …}

Analyzing a Clickstream Logs Table

Confidential and proprietary. Copyright © 2011 Teradata Corporation. 43

SELECT count(distinct userId)

FROM nPath(

ON clicks

PARTITION BY userId

ORDER BY timeOfAction

MODE(NONOVERLAPPING)

PATTERN(„H.A.P.B‟)

SYMBOLS(

actionType = „visitHome‟ AS H,

actionType = „viewAuction‟ AS A,

actionType = „viewProfile‟ AS P,

actionType = „placeBid‟ AS B

)

RESULT(first(userId of H) as userId)

);

The nPath Query for a Specified Path

Confidential and proprietary. Copyright © 2011 Teradata Corporation. 44

• Partition the source data into groups

• Order each group to form a sequence

• Match subsequences of interest

- Define a set of symbols via predicates

- Define the subsequences of interest

via a regular expression of symbols

• Compute aggregates over each matching subsequence

The Four nPath Steps

Confidential and proprietary. Copyright © 2011 Teradata Corporation. 45

• Knowing the most common paths that users take
through a website helps answer these questions:

- How are users traversing the site?

- Where should we focus our site design efforts?

- Are premature exits occurring? Where?

- What‟s the „Golden Path‟ (primary patch to $$)?

- How many users are following the golden path?

- Are there equally profitable alternatives paths to $$?

Path Aggregation Questions and Answers

Confidential and proprietary. Copyright © 2011 Teradata Corporation. 46

SELECT path, count(*) as freq

FROM NPATH (

ON page_event_fact

PARTITION BY session_key

ORDER BY page_event_timestamp

MODE (OVERLAPPING)

PATTERN ('^A.B*$')

SYMBOLS (

page_key = 1 AS A, TRUE AS B

)

RESULT(ACCUMULATE(page_key OF B) AS path)

) T

GROUP BY path

ORDER BY freq DESC LIMIT 10;

The Accumulate function will returns a string, containing
the sequence of page event keys, like this: “2:5:10:32…”

nPath Query to Find the Top 10 Common Paths

Confidential and proprietary. Copyright © 2011 Teradata Corporation. 47

• Page dwell time duration analysis

- Dwell is the elapsed duration between when the user views a
page and when the user moves on to view a subsequent page.

• In an opt-in scenario…

- A low page dwell time may be desirable. The longer visitors are
“distracted” from the event, the more likely they will abandon.

• For pages with educational information…

- A longer page dwell time is desirable. The longer people view
content, the more likely they thoroughly absorb the material.

Page Dwell Analysis

Confidential and proprietary. Copyright © 2011 Teradata Corporation. 48

Question: Find the Average Page Dwell, in seconds, for all Pages

SELECT avg(b_time - a_time) as Avg_Page_Dwell

FROM npath (

ON (select * from page_event_fact where user_id = 2123)

PARTITION by session_key

ORDER by page_event_timestamp

MODE (OVERLAPPING)

PATTERN ('A.B')

SYMBOLS (true as A, true as B)

RESULT (LAST(page_event_timestamp of B) as b_time,

FIRST(page_event_timestamp of A) as a_time)

) T

;

nPath Query for Page Dwell Time Analysis

Confidential and proprietary. Copyright © 2011 Teradata Corporation. 49

• Loan transactions table:

 customer | eventtimestamp | eventtype | amount

----------+----------------+---------------+--------

 qi | 2011-01-01 | payment | 100

 qi | 2011-02-10 | latepayment | 100

 qi | 2011-03-01 | payment | 200

 qi | 2011-03-15 | CLI |

 qi | 2011-04-01 | payment | 95

 qi | 2011-05-01 | payment | 107

 qi | 2011-06-15 | missedpayment |

 qi | 2011-07-15 | missedpayment |

• Find sequence of credit line increase request (CLI) followed
eventually by default (2 or more consecutive missedpayment).
Find the customer and the latency from CLI to defaults.

Usecase: Credit Line Increase to Default

Confidential and proprietary. Copyright © 2011 Teradata Corporation. 50

SELECT *, default_ts - cli_ts as cli_to_default_latency

FROM npath (ON loan_transactions

 partition by customer

 order by eventtimestamp

 mode(nonoverlapping)

 pattern('CLI.X*.DEFT{2}')

 symbols(eventtype='CLI' as CLI, true as X,

 eventtype='missedpayment' as DEFT)

 result(first(customer of CLI) as customer,

 first(eventtimestamp of CLI) as CLI_ts,

 last(eventtimestamp of DEFT) as default_ts)

);

 customer | cli_ts | default_ts | cli_to_default_latency

----------+------------+------------+------------------------

 qi | 2011-03-15 | 2011-07-15 | 122

Usecase: Credit Line Increase to Default

Confidential and proprietary. Copyright © 2011 Teradata Corporation. 51

• In table loan_transactions, for each incidence of default (2 or more
consecutive missedpayment), return the customer and the amount of
the very last payment made.

SELECT *

FROM npath (ON loan_transactions

 partition by customer

 order by eventtimestamp

 mode(nonoverlapping)

 pattern('PAYMENT.DEFT{2}')

 symbols(eventtype='payment' as PAYMENT,

 eventtype='missedpayment' as DEFT)

 result(first(customer of PAYMENT)

 as customer, first(amount of PAYMENT)

 as last_payment_amount)

);

Related Usecase: Last Payment Before Default

 customer | last_payment_amount

----------+---------------------

 qi | 107

Confidential and proprietary. Copyright © 2011 Teradata Corporation. 52

From the pageviews table, for all incidents of a customer visiting the
"mortgage apply form" page, return the customer and the sequence of
the last 3 urls visited leading up to the mortgage apply form pageview.

pageviews

 customer | eventtimestamp | url

----------+---------------------+---------------------

 antonio | 2011-01-02 02:15:00 | page1

 antonio | 2011-01-02 02:16:00 | page1

 antonio | 2011-01-02 02:25:00 | page9

 antonio | 2011-01-02 05:15:00 | mortgage apply form

 antonio | 2011-01-02 05:16:00 | page1

 karthik | 2011-01-01 12:00:00 | seo landing1

 karthik | 2011-01-01 12:15:00 | page1

 karthik | 2011-01-01 12:16:00 | page23

 karthik | 2011-01-02 09:00:00 | page5

 karthik | 2011-01-02 09:05:00 | mortgage apply form

 karthik | 2011-01-02 10:00:00 | page12

Exercise 1: Last 3 Pageviews Before Mortgage App

Hint: you will want
to use ilike and not
ilike in your pattern
symbol definitions.

Confidential and proprietary. Copyright © 2011 Teradata Corporation. 53

nPath Exercise 1 Answer:

SELECT *

FROM npath (

 ON pageviews

 PARTITION BY customer

 ORDER BY eventtimestamp

 MODE (nonoverlapping)

 PATTERN (‘PV.PV.PV.MAF’)

 SYMBOLS(url not ilike ‘mortgage_apply_form’ as PV,

 url ilike ‘mortgage_apply_form’ as MAF)

 RESULT (first(customer of PV) as customer,

 ACCUMULATE(url of PV) as leadingPageSequence)

);

Confidential and proprietary. Copyright © 2011 Teradata Corporation. 54

nPath Cross-Symbol Reference

• Example: find customers who view product P and buy it right
away within 5 seconds

• Use nPath LAG function support in SYMBOLS clause

- LAG must be on left side of comparison and all arithmetic on right
side of comparison

- Can use multiple LAG expressions AND‟ed together

select * from npath (

 on pageview

 partition by userid

 order by ts

 mode (nonoverlapping)

 pattern ('P.BUY')

 symbols (url='p.html' as P, url='checkout.html' and

lag(ts,1)>=ts-interval '5 seconds' as BUY)

 result (first(userid of P) as userid, first(ts of P) as p_ts,

first(ts of BUY) as buy_ts)

);

Confidential and proprietary. Copyright © 2011 Teradata Corporation. 55

In table monthly_balances, find
instances where customers show
at least 2 consecutive month to
(prior) month balance decline of at
least 10%, immediately followed
by a balance increase of at least
30%. Return customer name and
sequence of balances covering the
declines and increase months.

Monthly Balance Declines Followed by a Increase

monthly balances

customer | eventdate | balance

----------+------------+---------

 bob | 2011-01-01 | 2500

 bob | 2011-02-01 | 2000

 bob | 2011-03-01 | 1000

 bob | 2011-04-01 | 500

 bob | 2011-05-01 | 600

 bob | 2011-06-01 | 1700

 joe | 2011-01-01 | 1500

 joe | 2011-02-01 | 2500

 joe | 2011-03-01 | 2000

 joe | 2011-04-01 | 1500

 joe | 2011-05-01 | 2500

 joe | 2011-06-01 | 3500

Confidential and proprietary. Copyright © 2011 Teradata Corporation. 56

select *

from npath (on monthly_balances

 partition by customer

 order by eventdate

 mode(nonoverlapping)

 pattern('PREV.DOWN+.UP')

 symbols(true as PREV,

 lag(balance,1)>= (balance/0.9)::int as DOWN,

 lag(balance,1)<= (balance/1.3)::int as UP)

 result(first(customer of DOWN) as customer,

 accumulate(balance of ANY(PREV,DOWN,UP)) as balance_sequence)

);

 customer | balance_sequence

----------+--------------------------

 joe | [2500, 2000, 1500, 2500]

Monthly Balance Declines Followed by a Increase

Confidential and proprietary. Copyright © 2011 Teradata Corporation. 57

• From the savings_transactions table, identify any pairs of adjacent
deposits (ignore debits) whose amounts are over $500 and within
2% of each other. Return the customer, the two deposit amounts,
and the time lag between the first and the second of the deposits.

savings transactions

customer | eventtimestamp | amount

----------+---------------------+--------

 bob | 2011-01-01 00:00:00 | 1050

 bob | 2011-01-15 00:00:00 | 1040

 bob | 2011-01-17 00:00:00 | -50

 bob | 2011-01-19 00:00:00 | 91

 bob | 2011-02-01 00:00:00 | 1051

 bob | 2011-02-14 00:00:00 | 1059

Exercise 2: Detect Paycheck Deposits

Hint: you will want
to use lag in your
symbol definitions.

Confidential and proprietary. Copyright © 2011 Teradata Corporation. 58

nPath Exercise 2 Answer:

SELECT customer, firstDepositAmount, secondDepositAmount,

(secondDepositDate – firstDepositDate) as DepositLag

FROM npath (

 ON (select * from savings_transactions where amount > 0)

 PARTITION BY customer

 ORDER BY eventtimestamp

 MODE (overlapping)

 PATTERN (‘D1.D2’)

 SYMBOLS(amount > 500 as D1,

 lag(amount, 1) BETWEEN 0.98*amount AND 1.02*amount as D2)

RESULT (first(customer of D1) as customer,

 first(eventtimestamp of D1) as firstDepositDate,

 last(eventTimeStamp of D2) as secondDepositDate,

 first(amount of D1) as firstDepositAmount,

 last(amount of D2) as secondDepositAmount)

);

Confidential and proprietary. Copyright © 2011 Teradata Corporation. 59

• In table savings_transactions, find incidence of at least three
consecutive deposits of less than $30 that are within an hour of the
prior transaction, followed by a large debit of at least $150 that is
within 48hrs immediately following last of the string of deposits.
Return the customer, the count and sum of the deposits, start/end
time of the small deposits, amount and time of the large debit.

 customer | eventtimestamp | amount

----------+---------------------+--------

 alice | 2011-01-01 00:00:00 | 150

 alice | 2011-01-05 00:00:00 | 300

 alice | 2011-01-06 00:00:00 | -10

 alice | 2011-01-06 02:00:00 | 15

 alice | 2011-01-06 02:03:00 | 20

 alice | 2011-01-06 02:04:00 | 2

 alice | 2011-01-06 02:50:00 | 8

 alice | 2011-01-06 03:30:00 | 28

 alice | 2011-01-06 03:31:00 | 20

 alice | 2011-01-06 03:35:00 | 19

 alice | 2011-01-07 09:00:00 | -150

 alice | 2011-01-07 09:02:00 | 11

Money Laundering: Small Credits then Big Debit

Confidential and proprietary. Copyright © 2011 Teradata Corporation. 60

select *

from npath (on savings_transactions

 partition by customer

 order by eventtimestamp

 mode(nonoverlapping)

 pattern('INITIALSMALLDEP.SMALLDEP.SMALLDEP+.BIGDEBIT')

 symbols(amount>=0 and amount<30 as INITIALSMALLDEP,

 amount>=0 and amount<30 and lag(eventtimestamp,1)>=eventtimestamp-interval '1 hour' as SMALLDEP,

 amount<=-150 and lag(eventtimestamp,1)>=eventtimestamp-interval '48 hours' as BIGDEBIT)

 result(first(customer of SMALLDEP) as customer,

 count(* of ANY(INITIALSMALLDEP,SMALLDEP)) as smalldeposit_count,

 sum(amount of ANY(INITIALSMALLDEP,SMALLDEP)) as smalldeposit_total,

 first(eventtimestamp of INITIALSMALLDEP) as smalldeposit_starttime,

 last(eventtimestamp of SMALLDEP) as smalldeposit_endtime,

 first(eventtimestamp of BIGDEBIT) as bigdebit_time,

 first(amount of BIGDEBIT) as bigdebit_amount)

);

 customer | smalldeposit_count | smalldeposit_total | smalldeposit_starttime | smalldeposit_endtime |

bigdebit_time | bigdebit_amount

----------+--------------------+--------------------+------------------------+----------------------

+---------------------+-----------------

 alice | 7 | 112 | 2011-01-06 02:00:00 | 2011-01-06 03:35:00 |

2011-01-07 09:00:00 | -150

Money Laundering: Small Credits then Big Debit

Confidential and proprietary. Copyright © 2011 Teradata Corporation. 61

From the credit_transactions table, identify the incidence of at least 2
autorepair category spend within 2 weeks of a prior autorepair spend,
immediately followed by an autodealer spend of at least $500 that is
within 2 weeks of the prior autorepair spend. Return the customer,
the number and total autorepair spend, the date of the first and last
autorepair spend, and the date and amount of the autodealer spend.

 customer | eventdate | merchant | merchantcategory | amount

----------+------------+----------+------------------+--------

 alice | 2011-01-02 | m1 | cat1 | 150

 alice | 2011-01-03 | m2 | cat2 | 20

 alice | 2011-01-10 | m2 | cat2 | -10

 alice | 2011-01-10 | m3 | autorepair | 150

 alice | 2011-01-13 | m4 | autorepair | 45

 alice | 2011-01-14 | m3 | autorepair | 109

 alice | 2011-01-20 | m5 | autorepair | 230

 alice | 2011-02-01 | m6 | autodealer | 500

Exercise 3: Auto Repairs Leading to Auto Purchase

Confidential and proprietary. Copyright © 2011 Teradata Corporation. 62

nPath Prototype for Proxy Log Pattern Detection

CREATE TABLE npath_results DISTRIBUTE BY HASH(asset_tag) AS

SELECT *, last_ts-first_ts AS pattern_duration

FROM nPath(

 ON (select p.*, d.mac_address, d.asset_tag

 FROM proxy P

 JOIN

 dhcp d

 ON p.ip = d.ip

 AND p.timestamp BETWEEN d.lease_start AND d.lease_end

 WHERE p.timestamp BETWEEN ‘2011-10-10’ AND ‘2011-10-17’)

PARTITION BY asset_tag

ORDER BY timestamp

MODE(nonoverlapping)

PATTERN(‘SN{1,3}.A*.BT{3,}.A*.BIGMAIL’)

SYMBOLS(

 (url LIKE ‘%twitter.com%’ OR url LIKE ‘%facebook.com%’) AS SN, -- social network

 true AS A,

 (url LIKE ‘%piratebay%’ OR url LIKE ‘%torrentz%’) AS BT, -- bit torrent

 (url LIKE ‘%mail.yahoo.com%’ AND bytes_sent > 50000) AS BIGMAIL)

RESULT(FIRST (asset_tag OF SN) AS asset_tag,

 ACCUMULATE (p.ip OF ANY(SN,BT,BIGMAIL)) AS ips,

 ACCUMULATE (url OF SN) AS sn_urls,

 ACCUMULATE (url OF BT) AS bt_urls,

 FIRST (timestamp OF SN) AS first_ts,

 LAST (timestamp OF BIGMAIL) AS last_ts)

) T

;

Aster Analytical Foundation Overview

Confidential and proprietary. Copyright © 2011 Teradata Corporation. 64

Path Analysis

Discover patterns in rows of sequential data

Statistical Analysis

High-performance processing of common statistical calculations

Relational Analysis

Discover important relationships among data

Text Analysis

Derive patterns in textual data

Cluster Analysis

Discover natural groupings of data points

Data Transformation

Transform data for more advanced analysis

Six Categories of Analytic Functions

Confidential and proprietary. Copyright © 2011 Teradata Corporation. 65

Sample SQL-MapReduce Packaged Functions

Modules SQL-MapReduce Analytic Functions

Path Analysis

Discover patterns in rows
of sequential data

• nPath: complex sequential analysis for time series and behavioral patterns

• Sessionization: identifies sessions from time series data in single pass

• Attribution: operator to help ad networks and websites to distribute “credit”;
options such as Uniform, Weighted and Exponential by occurrence or time.

Graph and
Relational Analysis

Analyze patterns across
rows of data

• Graph analysis: finds shortest path from distinct node to all other nodes in
graph

• nTree: new function for performing operations on tree hierarchies. *

• Other: triangle finding, square finding, clustering coefficient *

Text Analysis

Derive patterns in textual
data

• Sentiment Analysis: classify content is positive or negative
(for product review, customer feedback) *

• Text Categorization: used to label content as spam/not spam *

• Entity Extraction/Rules Engine: identify addresses, phone number, names
from textual data *

• Text Processing: counts occurrences of words, identifies roots, & tracks
relative positions of words & multi-word phrases

• nGram: split an input stream of text into individual words and phrases

• Levenshtein Distance: computes the distance between two words

Data
Transformation

Transform data for more
advanced analysis

• Pivot: convert columns to rows or rows to columns *

• Log parser: Generalized tool for parsing Apache logs *

• Unpack: extracts nested data for further analysis

• Pack: compress multi-column data into a single column

• Antiselect: returns all columns except for specified column

• Multicase: case statement that supports row match for multiple cases

New

New

New

Confidential and proprietary. Copyright © 2011 Teradata Corporation. 66

Sample SQL-MapReduce Packaged Functions

Modules SQL-MapReduce Analytic Functions

Statistical
Analysis

High-performance
processing of
common statistical
calculations

• GLM: generalized linear model function that supports logistic, linear,
log-linear regression models. Returns all parameters similar to R/SAS *

• Naïve Bayes Classifier: simple probabilistic classifier;
applies Bayes Theorem to data sets. *

• Support Vector Machines: a supervised learning method for classification and
regression analysis *

• PCA: Principal Component Analysis -transforms a set of observations into a set of
uncorrelated variables. *

• Histogram: function to assign values to bins

• Decision Trees: creates model of decisions and their possible implications

• Approximate percentiles and distinct counts: calculates within specific variance

• Correlation: characterizes the strength of the relation between different columns

• Regression: linear/logistic regression btwn output variable & set of input variables

• Averages: moving, weighted, exponential or volume-weighted averages

Cluster
Analysis

Discover natural
groupings of data
points

• k-Means: clusters data into a specified number of groupings

• Canopy: partitions data into overlapping subsets where k-means is performed

• Minhash: buckets highly-dimensional items for cluster analysis

• Basket analysis: creates configurable groupings of related items from transaction
records in single pass

• Collaborative Filter: predicts the interests of a user by collecting interest information
from many users

New

Confidential and proprietary. Copyright © 2011 Teradata Corporation. 68

Path Analysis Functions:

• nPath: Complex sequence analysis for pattern matching on time
series data.

• Path Generator: This function takes as input a set of paths
where each path is a route (i.e. a series of pageviews) taken by a
user from start to end. Then for each path, it generates the
correctly formatted sequence and all possible sub-sequences for
analysis by the Path Summarizer function. (See below…)

• Path Starter: Generates all the children for a particular parent
and sums up their count. Note: the input data has to be
partitioned by the parent column.

• Path Summarizer: This function takes as input the Path
Generator function output and produces sum counts on all nodes.
A “node" can be a plain sub-sequence (where the sequence and
sub-sequence are different) or an exit sub-sequence (where both
the sequence and sub-sequence are the same).

Confidential and proprietary. Copyright © 2011 Teradata Corporation. 69

Sessionization

• A session as a sequence of web site clicks by a user where no

more than n seconds pass between successive clicks.

• Sessionization is the process of mapping each user click in a
clickstream to a session identifier.

• If there is not a click from a user for n seconds then we start a
new session.

timestamp userid …

10:00:00 238909 …

00:58:24 7656

10:00:24 238909

02:30:33 7656

10:01:23 238909

10:02:40 238909

timestamp userid … sessionid

10:00:00 238909 … 0

10:00:24 238909 0

10:01:23 238909 0

10:02:40 238909 1

00:59:24 7656 0

02:30:33 7656 1

Confidential and proprietary. Copyright © 2011 Teradata Corporation. 71

• The Histogram SQL-MR function is used to understand the
probability distribution of a continuous variable.

• It divides the entire data set into bins then identifies the number
of points in each bin based on the value of a particular column.

• Bins can be:

- continuous or discrete

- equal or un-equal

- overlapping or non-overlapping

• BI tools do this by issuing multiple queries on the same table.

Histogram

Confidential and proprietary. Copyright © 2011 Teradata Corporation. 72

SELECT * from histogram_reduce

(ON histogram_map

 (ON customers

 BIN_SIZE(„10‟)

 START_VALUE(‟0‟)

 VALUE_COLUMN(‟age‟)

)

 PARTITION BY (bin)

 ACCUMULATE('bin', 'start_bin', 'end_bin‟)

) ORDER BY bin;

Histogram: Continuous, Non-overlapping, Equal

Confidential and proprietary. Copyright © 2011 Teradata Corporation. 73

Histogram: Discrete, Overlapping, Un-Equal

SELECT * from histogram_reduce

(ON histogram_map

 (ON customers

 INTERVAL('0:30','20:30','40:70','70:100000‟)

 VALUE_COLUMN(‟age')

)

 PARTITION BY (bin)

 ACCUMULATE ('bin', ‟end_bin‟, ‟start_bin')

) ORDER BY bin;

Confidential and proprietary. Copyright © 2011 Teradata Corporation. 74

Predictive Analytics

• Predictive Analytics is the process of assigning likelihoods to
future actions based upon the occurrences of past actions.

• Pre-packaged analytic operators

- Machine-learning Classification: Decision Tree; Naïve Bayes

- Regression Analysis: Linear regression; Logistic regression

• Methodology

- N-fold cross-validation

• Usecases

- Ecommerce: propensity to buy big ticket product

- Insurance: propensity to buy product; propensity to defect

- Healthcare: propensity for hospital re-admission within N days

Confidential and proprietary. Copyright © 2011 Teradata Corporation. 75

Predictive Analytics – Iterative Approach

1. Define prediction problem:

• Input: rows (e.g. set of users) and columns (e.g. # jobs) for past

• Output: boolean/categorical/numeric metric for future

2. Assembly:

• Algorithm

• Classification: decision tree, Naïve Bayes, SVM, Regression: linear, logistic, ..

• Algorithm parameters (e.g. decision tree # levels)

• Dataset

• Segment: e.g. US users; high tech users; male users

• Time snapshot: as of April 1, 2011

• Feature set

• Output (e.g. propensity to buy LinkedIn Premium product)

Confidential and proprietary. Copyright © 2011 Teradata Corporation. 76

Predictive Analytics – Iterative Approach (Cont.)

3. Validate:

• Divide labeled dataset into training and test set

• Train on training set, evaluate accuracy metrics on test set

• Repeat on different train/test sets for cross-validation

4. Iterative Refinement:

• Change step#2 specifications

• Perform step #3 validation

• Repeat over and over

Confidential and proprietary. Copyright © 2011 Teradata Corporation. 77

Machine Learning Classification

• Data:

- input features (categorical and numeric)

- output prediction (categorical)

• Methodology

- Training: Build model from labeled set of <input features, known output value>

- Validation: Use model on holdout labeled set, read <input features> and predict
output. Evaluate accuracy by comparing predicted and known output.

- Classification: Use model on unlabeled dataset without known output

- Cross-validation: repeat train+validate multiple times by dividing one labeled
dataset into multiple folds

• Accuracy metrics

- Accuracy: # predictions match known output / # predictions

- Precision (wrt an output value): # true positives / # predictions of this value

- Recall (wrt an output value): # true positives / # known outputs of this value

Confidential and proprietary. Copyright © 2011 Teradata Corporation. 78

Precision and Recall (From Wikipedia)

• When a program for recognizing dogs in a scene correctly
identifies 4 of the 9 dogs mistakes 3 cats for dogs:

• its precision is 4/7 (probability that the returned results are relevant)

• and recall is 4/9 (probability that relevant results are returned)

• When a search engine returns 30 pages, only 20 of which
were relevant, while failing to return 40 relevant pages:

• its precision is 20/30 = 2/3

• while its recall is 20/60 = 1/3

• Good Prediction Models provide precision and recall close to 1.

Confidential and proprietary. Copyright © 2011 Teradata Corporation. 79

Machine Learning Classification - Decision Tree

• Training: use labeled training set
to create decision tree model;
algo chooses splitting attribute
that results in two subtrees each
with dominating output class

• Parallelization

• Training: ensemble method builds a
decision tree on each vworker

• Model: copy all trees to all vworkers

• Classification: locally classify each
row using forest of decision trees –
aggregate one output prediction

• Our implementation requires
numeric predictor variable

• Training: categorical values must
be converted to integral values

• Classification: analyst must
discretize continuous predicted
value into categorical

Hypothetical Nook Purchase
Propensity Decision Tree Model

Confidential and proprietary. Copyright © 2011 Teradata Corporation. 80

Machine Learning - Decision Tree Function

• Training
SELECT * FROM forest_drive (

 ON (select 1)

 PARTITION BY 1

 domain('[queen hostname/ip]')

 database('[database]')

 userid('[userid]')

 password('[password]')

 inputTable('[input table name]')

 outputTable('[output model table name]')

 response('[numeric response column name]')

 numericInputs('col1','col2'..)

 categoricalInputs('col3','col4'..)

 numTrees('[number of trees to grow]')

);

• Labeled dataset Response column –
numeric type.

• numTrees: >= # vworkers in cluster

• Classification
 SELECT *FROM forest_predict (

 ON [test_set_table]

 domain('[domain]')

 database('[database]')

 password('[password]')

 userid('[userid]')

 forest('[model_table]')

 numericInputs('[numeric feature column names]')

 categoricalInputs('[categorical feature column names]')

 idCol('[id_column to uniquely identify an input row]')

);

• Output of classification: <id_column, predicted
value(numeric) >

• Join back to input test_set_table to compare
input feature values and predicted output

• For validation, join back to input test_set_table
to compare true output and predicted output to
compute precision/recall

Confidential and proprietary. Copyright © 2011 Teradata Corporation. 81

Machine Learning Classification - Naïve Bayes

P(buy nook|male, 20 orders last month, not book club member) =

1/Z * P(buy nook) * P(male|buy nook) * P(20 order last month|buy

nook) * P(not book club member|buy nook)

P(not buy nook|male, 20 orders last month, not book club member)

= 1/Z * P(not buy nook) * P(male|not buy nook) * P(20 order last

month|not buy nook) * P(not book club member|not buy nook)

• Training: Calculate prior probability distributions on each
vWorker. Assume independence of input features. Combine
probability distributions globally and copy to all vWorkers.

• Classification: Use prior probability distribution to compute
the most likely output class for each local row.

Confidential and proprietary. Copyright © 2011 Teradata Corporation. 82

Machine Learning - Naïve Bayes Functions

• Training
CREATE DIMENSION TABLE [model_table_name]

AS

SELECT * FROM naiveBayesReduce(

 ON(SELECT * FROM naiveBayesMap(

 ON [input_table]

 response('[response column name]')

 numericInputs('[numeric feature

column names]')

 categoricalInputs('[categorical

feature column names]')

)

)

 PARTITION BY class

);

• Response column can be integer or
non-numeric categorical values

• Classification
SELECT * FROM naiveBayesPredict(

 ON [input_table]

 DOMAIN([queen_ip:port])

 DATABASE([db_name])

 USERID([db_userid])

 PASSWORD([db_pwd])

 MODEL([model_table_name])

 IDCOL([id_column to uniquely identify an

input row])

 numericInputs('[numeric feature column

names]')

 categoricalInputs('[categorical feature

column names]')

);

• Output: <id column, predicted
categorical value, loglikelihood of each
possible categorical value..>

Confidential and proprietary. Copyright © 2011 Teradata Corporation. 83

Logistic Regression

• Logit function takes real input value
(function z) and outputs [0,1]

• Training: Solve for parameters B0..Bk
for best-fit f(z(x1..xk)) on training set

• Our implementation requires:

- First column of input table must be the
predictor feature. Must be boolean type.

- Rest of the columns are input features.
Must be real, integer, or boolean type.

Confidential and proprietary. Copyright © 2011 Teradata Corporation. 84

Logistic Regression - Training

SELECT * FROM log_regression (

 ON (select 1)

 PARTITION BY 1

 domain('[queen hostname/ip]')

 database('[database]')

 userid('[userid]')

 password('[password]')

 inputTable('[input table name]')

 outputTable('[output model table name]')

 weights('weight1','weight2'..)

 columnnames('col1','col2'..)

);

• Columnames: optional. Must be a list of <predictor column, input col1, input col2..>

• Predictor column must be boolean type

• Input columns must be real/int/boolean type

• Weights: optional. Must have same # of values as Columnnames clause list.
Specifies initial weights. Default 0.1 for all features.

Confidential and proprietary. Copyright © 2011 Teradata Corporation. 85

Logistic Regression - Prediction

SELECT * FROM log_predict (

 ON [test_set_table/(SELECT QUERY)]

 domain('[domain]')

 database('[database]')

 password('[password]')

 userid('[userid]')

 weightstable('[model_table]')

 thresholds('threshold1', 'threshold2',..)

);

• ON clause: input relation must be <id column, input col1, input col2…> where the input
columns match the input columns fed to log_regression.

• Thresholds: optional. By default we discretize prediction as true/false at 0.5. User can
specify multiple custom thresholds.

• Output of classification

• Default: <id_column, probability between 0 and 1, predicted value true/false >

• With thresholds clause: <id_column, probability between 0 and 1, predicted value true/false based on
threshold1, threshold2, ..>

• User can join back to input test_set_table to compare input values with predicted output.

• For validation, join back to input test_set_table to compare true output and predicted
output to compute precision/recall.

Confidential and proprietary. Copyright © 2011 Teradata Corporation. 86

Linear Regression

Y = B0 + B1 x1+ ..+ Bk xk

• Linear regression function is a linear combination of the input variables.

• Training: Solve for parameters B0..Bk for a best-fit Y=f(x1..xk) on the
training set.

Confidential and proprietary. Copyright © 2011 Teradata Corporation. 87

Linear Regression - Training

SELECT *

FROM LINREG

 (ON LINREGMATRIX

 (ON tablename/(select query)

)

 PARTITION BY 1

);

• LINREGMATRIX function executes on all vworkers in parallel, output small amount of
summary data

• Input schema: <input col1, input col2, … input colK, output predictor column>

• All input columns and output column must be numerical (integral/real) type

• LINREG function executes on only 1 vworker by combining output of LINREGMATRIX

• Output coefficients B0..Bk.

Confidential and proprietary. Copyright © 2011 Teradata Corporation. 88

Linear Regression - Prediction

• Unlike logistic regression, there is not a function for running prediction.

• User must write SQL to apply the coefficients to compute the prediction.

SELECT *

FROM LINREG

 (ON LINREGMATRIX

 (ON (select input1,input2,output from dataset)

)

 PARTITION BY 1

);

 coefficient_index | value

-------------------+-------------------

 0 | 2.85714285714288

 1 | -2.0571428571429

 2 | 0.342857142857149

select input1,input2,output, 2.8571 - 2.0571*input1 +0.3429*input2 as output_predict

from dataset limit 5;

 input1 | input2 | output | output_predict

--------+--------+--------+----------------

 7 | 37 | 1 | 1.1447

 7 | 38 | 1 | 1.4876

 7 | 39 | 2 | 1.8305

 7 | 40 | 3 | 2.1734

 7 | 41 | 3 | 2.5163

Confidential and proprietary. Copyright © 2011 Teradata Corporation. 89

SELECT *

FROM SMAVG

 (

 ON input_table

 COLUMNS('column_names')

 RETURN_ALL('true|false')

 WINDOW_SIZE('window_size')

)

Simple Moving Average

• COLUMNS: Optional clause which
specifies the column name for
which simple moving average is
required. If this clause is omitted,
all the input rows are output as is.

• RETURN_ALL: Optional clause
which specifies if the first
WINDOW_SIZE rows should be
output or not. Since simple moving
average for the first WINDOW_SIZE
is not defined, null‟s will be
returned for those columns.

• WINDOW_SIZE: Optional clause
which specifies the number of old
values to be used for calculating
the new weighted moving average.
The default window size is 10.

Confidential and proprietary. Copyright © 2011 Teradata Corporation. 90

• Exponential moving average: The weighted moving
average function computes the average over a number of
points in a time series but applies a damping (weighting)
factor to older values. The weighting for the older values
decreases exponentially without discarding older values.

• Weighted moving average: The weighted moving
average computes the average over a number of points in
a time series but applies a weighting to older values. The
weighting for the older values decreases arithmetically.

• Volume weighted average price: The volume weighted
average price computes the average trade price of a stock
over a specified time interval.

Other “Average” SQL-MR Functions:

Confidential and proprietary. Copyright © 2011 Teradata Corporation. 92

Graph Analysis - Single Source Shortest Path

• Input

- Relational representation of edges in a graph

<source vertex id, destination vertex id>

- Specify starting vertex id

• Output: list of all vertices

- Vertex id

- Whether this vertex is reachable from starting vertex

- All vertices this vertex is connected to via an edge

- Least # hops from starting vertex

- Path (sequence of vertex ids) of shortest path from starting vertex

Confidential and proprietary. Copyright © 2011 Teradata Corporation. 93

Graph Analysis – nTree

What is nTree?

- SQL-MapReduce function

- Build order tree hierarchies

- Link order to root

- Propagate/aggregate information
across the tree

Benefits

- Multi-level trees built with single
pass over the data

- Variety of aggregates built-in :
propagate, sum, average, path.

- Detect and break cycles in bad data

- Variety of tree-traversal options :
push down, push up.

SQL-based approaches would require
significant SQL code changes to modify
analysis (traversal pattern, aggregates)

CAVEAT: problem must be partition able

•Time-series analysis,
uncovering patterns in
sequential steps

Hierarchy analysis

Ord_id Parent
Ord_id

Symbol Root
Order_id

Level

9Y091 AAPL 9Y091 1

5X452 9Y091 AAPL 9Y091

2

5Z347 5X452 AAPL 9Y091

3

7U198 5Z347 AAPL 9Y091

4

SELECT *

FROM nTree(

 ON (orders)

 PARTITION BY symbol

 KEY('ord_uuid')

 PARENT('parent_ord_uuid')

 ISROOT('is_root')

 NOCYCLE('1')

);

Confidential and proprietary. Copyright © 2011 Teradata Corporation. 94

nTree On Order Data

SELECT *

FROM nTree(

 ON (orders)

 PARTITION BY symbol

 ROOT_NODE(‘parent_ord_id=NULL‘)

 PARENTS(‘ord_id')

 CHILDS (‘parent_ord_id’)

 STARTS_WITH(ROOT)

 MODE (PUSH_DOWN)

 RESULT(

 PROPOGATE(ord_id) as grand_parent_id,

 LEVEL() as level

)

 OUTPUT(‘ALL’)

 ALLOW_CYCLES(‘true’)

 ID(‘ord_id’)

);

Parellelize across workers

Detect cycles

Build along ord_uuid

and parent_ord_uuid

Traversal options

Confidential and proprietary. Copyright © 2011 Teradata Corporation. 95

SELECT * FROM nGram

(

 ON my_docs

 TEXT_COLUMN('txt')

 DELIMITER(' ')

 GRAMS(2)

 OVERLAPPING('true)

 CASE_INSENSITIVE('true')

 PUNCTUATION(„[.,?!]')

 RESET('[.,?!]')

 ACCUMULATE('id','src‟)

);

nGram

Parse text into groupings of words.

Confidential and proprietary. Copyright © 2011 Teradata Corporation. 97

Text/Document Processing

• Extracting text from documents/files:

- PDF

- Office

- HTML

- HDFS

• Text analysis

- Preprocessing

- Keyword/phrase discovery

- Text classification

- Sentiment Analysis

• Extracting structure from unstructured content:

- Apache Weblog Parser

- JSON Parser

- XML Parser

Confidential and proprietary. Copyright © 2011 Teradata Corporation. 98

Sentiment Analysis

• Sentiment Analysis

- Dictionary approach: Positive/negative word lists.

- Scan a document and count # of +/- words

- Score count normalized by document length

• Text classification

- Naïve Bayes classification

- Input documents processed as sparse occurrence vector of words.

- Usecase

• Spam detection

• Sentiment analysis

• Topic classification. E.g. is the customer service chat log trending about
mortgage/savings/investing/insurance/loan products?

Confidential and proprietary. Copyright © 2011 Teradata Corporation. 99

The text_parser function has the following specifications:

• Input: a column containing text data

• Output: one row for each unique token in each document

- Token, count, position(s), other columns specified

• Variety of control parameters

- Case sensitivity

- Porter stemming (e.g., “containing” -> “contain”)

- Removal of stop words (e.g., “of”, “the”)

• Useful for processing large databases of text

Text Parser

Confidential and proprietary. Copyright © 2011 Teradata Corporation. 100

• Input table: war_diary

Text Parser Sample Invocation - Input

reportkey date category region text

FE21A53… 2004-05-18 Non-Combat
Event

RC EAST At the Village
of Dara there
seems to be
another…

FE21A53… 2004-05-18 Enemy
Action

RC EAST At 0200X,
The WAZA
KHWA
police…

… … … … …

Confidential and proprietary. Copyright © 2011 Teradata Corporation. 101

SELECT * FROM text_parser

 (

 ON war_diary

 TEXT_COLUMN („summary‟)

 ACCUMULATE(„reportkey‟)

 REMOVE_STOP_WORDS(„true‟)

 LIST_POSITIONS(„true‟)

);

Text Parser Sample Invocation - Process

Confidential and proprietary. Copyright © 2011 Teradata Corporation. 102

Text Parser Sample Invocation - Output

reportkey token frequency position

BFBE783… delhi 1 21

080e000… Picked 1 13

60C3b2… locals 5 85,104,…

811A82… madrassa 2 17,39

8CB6E0… frontiers 1 50

199711… afghani 3 2,29,31

… … … …

Confidential and proprietary. Copyright © 2011 Teradata Corporation. 104

K-means Clustering

• Find hidden patterns/clusters in data by
Dividing a set of data points into K disjoint
subsets of similar/nearby points

• Algorithm:

1. Starting with K clustroids - User specified/pick
random points in space/pick random points

2. Calculate cluster membership for each data
points – find closest clustroid

3. Recompute clustroid as avg of cluster member
points

4. Repeat steps 2 and 3 until converge or reach
limit in # iterations

• Data points are set of numeric feature values

• Usecases: customer segmentation, anomaly
detection, recommendation systems…

Confidential and proprietary. Copyright © 2011 Teradata Corporation. 105

K-means Clustering Function

SELECT *

FROM kmeans

(

 ON (SELECT 1)

 PARTITION BY 1

 [DOMAIN('<host_ip>')]

 [DATABASE('<database_name>')]

 [USERID('<db_user>')]

 [PASSWORD('<password>')]

 INPUTTABLE('<input_table_name>')

 OUTPUTTABLE('<output_table_name>')

 NUMBERK(<number_of_means>)

 [MEANS(<starting_clusters>)]

 THRESHOLD(<threshold>)

 MAXITERNUM(<max_iterations>)

);

• Input table schema: <id column,
numeric feature1, numeric feature2 …>

• Output table schema: <id column,
cluster id (0 to k-1), numerical
feature1, numerical feature2 …>

• Means clause: optional. User specified
list of starting clustroids. E.g. for k=2,
“means(„15_70‟, „22_150‟)” maps to
starting clustroid coordinates (15,70)
and (22,150).

• Threshold: optional. Convergence
criteria for distances in centroid
between iterations.

• Maxiternum: optional. Convergence
criteria in terms of # iterations.

Confidential and proprietary. Copyright © 2011 Teradata Corporation. 106

Canopy Clustering

• Quickly find a set of clustroids subject to constraints:

- Max distance from clustroid to cluster member point (t1)

- Min distance between any two clustroids (t2)

• Can be used as preprocessing step to K-means

• Quickly partition data points into overlapping canopies (clusters),
then apply more expensive clustering technique within each canopy.

• Input table schema: <id column, numerical feature1, numerical feature2 …>

• Output table schema: <canopy id, numerical feature1, numerical feature2 …>

• Input parameters: t1, t2 where t1>t2.

java -classpath canopyDriver.jar:<class path to file> -database=beehive -

inputtable=canopyinput -outputtable=canopyoutput -t1=2 -t2=1 -userid=beehive -

password=beehive -domain=192.168.75.100

Confidential and proprietary. Copyright © 2011 Teradata Corporation. 107

Minhash/Locality Sensitive Hashing

• Generate probabilistic and overlapping clusters of users who are
“similar” because they have bought similar items

- Can generate similar items that have been bought by similar users

• Assign a pair of users to the same cluster with probability proportional to
the overlap between the set of items that these users have bought

- For a given user, calculate multiple cluster ids using several hash
functions applied to a randomly chosen item this user has bought.

Confidential and proprietary. Copyright © 2011 Teradata Corporation. 108

Market Basket Generator

• Generate all itemsets of size K

- E.g. K=2: <milk, bread> are bought in the same transaction 1000 times;
<milk, beer> are bought together 500 times.

• Usecases

- Item to item affinity: What products are most commonly bought with milk?

- Recommendation:

• 1000 users watched both video1 and video2 (output of market basket generator).
Video1 was watched by 1200 users, video2 was watched by 1100 users.

• Probability(watch video2 | watch video1) = 1000/1200=0.83. This probability is high,
if a user watches video1 and has not yet seen video2, we should recommend video2.

• Probability(watch video1 | watch video2) = 1000/1100=0.91. If a user watches
video2 and has not yet seen video1, we should recommend video1.

Confidential and proprietary. Copyright © 2011 Teradata Corporation. 109

Market Basket Generator Function

SELECT *

FROM mbg

(

ON table_name|(query)

PARTITION BY <partition_column_1> [,

...]

[BASKET_SIZE(<basket_size_value>)]

BASKET_ITEM('<basket_item_column>')

ACCUMULATE('column1 [, column2, ...]')

[ITEM_SET_MAX(<item_set_max_value>)]

[COMBINATIONS('true|false')]

);

• PARTITION BY: grain of baskets. E.g.
Partition by customerid versus partition
by customerid, transactionid

• BASKET_ITEM: single column that
defines an item, e.g. productid

• BASKET_SIZE: default 2. Generate all
itemsets of <basket_size> # of items

• ACCUMULATE: input columns to output
with the itemset, e.g. customerid or
customerid,transactionid

• COMBINATIONS: optional. false: return
<item1,item2> as well as
<item2,item1>. Default True: return
only 1, the one in lexicographical order.

• ITEM_SET_MAX: optional. Default 100.
If a partition has more than this #
items, no output will be emitted.

Confidential and proprietary. Copyright © 2011 Teradata Corporation. 110

Market Basket Generator Output

• Output: <accumulate columns, item1, item2, .., item_basketsize, count>

- Count: # baskets that contain this item set

• From itemsets to recommendations using SQL

- Generate basket count for each unique item

- Join back to market basket output, e.g.

 <item1, item2, copurchase_basketcount, item1_basketcount, item2_basketcount>

- Compute recommendation metric

• Copurchase_basketcount/ (max(item1_basketcount, item2_basketcount))

• Copurchase_basketcount^2 / (item1_basketcount * item2_basketcount)

• Metric range [0-1]. 1 means 100% affinity, P(item1|item2)=P(item2|item1)=1.0.

• Forward in time basket generation

- Milk and bread copurchase affinity there is no time dependency

- Algebra book and calculus book copurchase has a strong time order; auto insurance
and homeowners insurance probably has a fairly strong time order

- Adding a flag to market basket generator SQLMR

Confidential and proprietary. Copyright © 2011 Teradata Corporation. 111

SELECT *

FROM BASKET_GENERATOR

 (

 ON input_table

 PARTITION BY (col, [, ...])

 BASKET_ITEM('basket_item_column')

 BASKET_SIZE('basket_size_column')

 [ACCUMULATE('col' [, '...'])]

 [COMBINATIONS('true|false')]

);

Market Basket Analysis Syntax

Confidential and proprietary. Copyright © 2011 Teradata Corporation. 112

• input_table: Table that contains the items to be collected into baskets.

• BASKET_ITEM: Required. Name of the column (in the input table) that
contains the items to be collected into baskets. Each row in the
BASKET_ITEM column is considered to be one item.

• BASKET_SIZE: Required. Number of items to be included in a basket.

• ACCUMULATE: Optional. Names of input columns to be returned as-is
in the output. All input columns not named here are left out of output.

• COMBINATIONS: Optional. Specifies if the output should include all
permutations of the items (each unique ordering of the items is
considered a unique basket) or only all combinations of the items
("tomatoes and basil" is considered the same as "basil and tomatoes").
By default, the function returns only the unique combinations.

Market Basket Function Parameters

Confidential and proprietary. Copyright © 2011 Teradata Corporation. 113

• User is expected to partition the input data in such a way that
each partition represents a collection of items. All the columns
specified in the ACCUMULATE clause will be emitted as is.

• It is assumed that each row of the BASKET_ITEM column
specifies one single item.

• Columns specified in the ACCUMULATE clause should be a
subset of columns specified in the PARTITION BY clause.

Market Basket Requirements

Confidential and proprietary. Copyright © 2011 Teradata Corporation. 114

SELECT *

FROM BASKET_GENERATOR

 (

 ON transactions_table

 PARTITION BY (userid)

 BASKET_ITEM('sku')

 BASKET_SIZE('3')

 ACCUMULATE(„userid')

 COMBINATIONS('true')

);

Market Basket Example

Userid Sku Trans #

123 111 555

123 222 556

123 333 557

123 444 558

Input

Userid Sku1 Sku2 Sku3

123 111 222 333

123 111 222 444

123 222 333 444

123 111 333 444

Output

Confidential and proprietary. Copyright © 2011 Teradata Corporation. 115

Collaborative Filtering

• Very common use case for retailers, on-line retailers,
internet and consumer-focused financial institutions

• Source data could be:

- retail purchase data

- on-line purchase data

- activity data

- credit card purchase data

• Output could fuel “analytics products” like:

- “people you bought this also bought …”

- “people who viewed this profile also viewed…”

- “people who liked this job also liked …”

Confidential and proprietary. Copyright © 2011 Teradata Corporation. 116

B&N Recommendations with Collaborative Filtering

Confidential and proprietary. Copyright © 2011 Teradata Corporation. 118

Data Transformation - Pack

SELECT * FROM pack (
 on sample_table
 COLUMN_NAMES ('age‟, „gender‟, „race‟, „numBuys‟, „numSells')
 COLUMN_DELIMITER („,‟)
 INCLUDE_COLUMN_NAME („false‟)
 PACKED_COLUMN_NAME(„packed_data‟)
);

Confidential and proprietary. Copyright © 2011 Teradata Corporation. 119

Data Transformation - Unpack

SELECT * FROM unpack
(
 on sample_table
 DATA_COLUMN(„packed_data‟)
 COLUMN_NAMES('age‟, „gender‟, „race‟, „numBuys‟, „numSells')
 COLUMN_TYPES('integer‟, „varchar‟, „varchar‟, „integer‟, „integer')
 COLUMN_DELIMITER(„,‟)
 IGNORE_BAD_ROWS(„true‟)
);

Confidential and proprietary. Copyright © 2011 Teradata Corporation. 120

Data Transformation – Multicase (Input & Output)

Confidential and proprietary. Copyright © 2011 Teradata Corporation. 121

Data Transformation – Multicase (Processing)

select * from multi_case

(ON

 (

 SELECT *,

 age < 1 as case1,

 (age >= 1 && age <=2) as case2,

 (age >= 2 && age <=12) as case3,

 (age >=13 && age <=19) as case4,

 (age >=16 && age <=25) as case5,

 (age >=21 && age <=40) as case6,

 (age >=35 && age <=60) as case7,

 (age >=60) as case8

 FROM mydata

)

 LABELS(

 ‘case1as"infant"',

 'case2as"toddler"’,

 'case3 as "kid"',

 'case4 as "teenager"',

 'case5 as "young adult"',

 'case6 as "adult"',

 'case7 as "middle aged person"',

 'case8as"seniorcitizens"’

)

);

Confidential and proprietary. Copyright © 2011 Teradata Corporation. 122

• SELECT * FROM logs
row_id | json_string

--------+---------------------

 1 | [1024,"Karthik",42]

 2 | [923,"George",25]

 3 | [48,"Frank",45]

 4 | [148,"Joe",49]

• SELECT * FROM jsonparse(ON logs …)
• row_id | id | name | age

• --------+------+----------+-----

• 1 | 1024 | Karthik | 42

• 2 | 923 | George | 25

• 3 | 48 | Frank | 45

• 4 | 148 | Joe | 49

JSON Parsing

SOURCE: logs Table

Using the jsonparse function

Confidential and proprietary. Copyright © 2011 Teradata Corporation. 123

SQL-MR Apache Log Format Parsing

Confidential and proprietary. Copyright © 2011 Teradata Corporation. 124

Dynamically interpret web log data via MapReduce

Apache Log Parsing Example

Clickstream_Log

Timestamp Referral Customer Session

Raw Log Input

Aster Data MPP Analytic Platform

SQL-MapReduce Staging for nPath

Clickstream_Log

Raw Log Input

Timestamp Referrral Customer Session

SQL-MapReduce Staging for nPath

SQL-MapReduce
program runs
in-platform

Click-stream Log Data

• High-speed,
parallel
loading

• Raw Apache
weblogs

Confidential and proprietary. Copyright © 2011 Teradata Corporation. 125

beehive=> select * from myspacedecrypt_keyfile(on testdecrypt inputcolumn('data'));
a | data | decrypted_output | decryption_error
---+---
--
---+---
--+------

3 |
n%2b0prKAebczfG13CmB%2fL170xxzjSK8k%2f19igSi%2f1c3uQLTXTYANJMky0qJd%2b9I2k8XWd1RMDad
U%2bPXFFnu2dIGF%2bP5ln0m0qtpKOiBgJNRjwzbOwD5WLljzRf3Zx8VEZYqclvNCxxMKgNzI5Oed0U9n6h%2
bWWvO4BDPQ2TCD7dH6i6msdHAkAqgoqMfpUcNYZUwyM4J0gp%2bBliskuemgFoqCOD%2fL5ovOI6kGCFmj
4NZLqWgfoZAqHjG5LsAW9ouWp |
track_type=ActivityClick&display_context=UserHome2&rcpt_uid=350157709&parent_oid=750580&init_uid
=528039026&raised_activity=PhotoAdd&oid=6978324&raise_ts=2010-07-01 19:10:39.000 |
4 |
n%2b0prKAebczfG13CmB%2fL170xxzjSK8k%2f19igSi%2f1c3uQLTXTYANJMky0qJd%2b9I2k0CR4XbEOO8H
Km91kINM7PE3niq88y1dnxFEQhXZ7MzGRP27THsk7jlQLncOv7ZLHIK%2bhoRwFs3eeBoKpTk5VzrBKuu4p3l7
9X8R0QRb4g8yQ8vnvHCdXNT2M3SzLlcco40EG5uZ5AdKCCDW7nE5pXpSgspPBVj37LCMY6lZOFhl%2bNlUUa
QsFVt4EhstbNOoI |
track_type=ActivityClick&display_context=UserHome2&rcpt_uid=356999567&parent_oid=-
1916564383&init_uid=32050898&raised_activity=BulletinAdd&oid=1&raise_ts=2010-06-27 22:23:00.000
|

Encrypted Data Queries

Confidential and proprietary. Copyright © 2011 Teradata Corporation. 126

• JSON (JavaScript Object Notation)

• Apache Logs

• Encrypted Data

• Word doc

• PDF

• HTML

• Excel

• PPT

• XML

• Sets of elements (Pack/Unpack)

• Lucene indexes

Interpretation of Multi-Structured Data

